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Numerical Simulation of Complex Flows of 
Semiconcentrated Fiber Suspensions 
SEONG JAE LEE and SEUNG JONG LEE* 
Department of Chemical Engineering, Seoul National University, Seoul 151 -742, Korea 

A finite element algorithm has been developed to predict flow and fiber orientation distribution of 
fiber suspensions. 

KEY WORDS Flow simulation, fiber orientation, fiber suspensions. 

1. INTRODUCTION 

Mechanical properties of short fiber reinforced composite materials strongly depend 
on the orientation distribution of fibers in the final products, which in turn is 
determined by the history of the flow field experienced during the processing steps. 
And the flow field itself is also influenced by the orientation distribution of fibers. 
Therefore, it is important to  understand the complicated flow patterns of fiber 
suspensions through complex geometries and to predict the orientation distribution 
of fibers. 

Most analytical studies of the fiber motion within the fluid flow have been based 
on Jeffery’s early model,’ which described the motion of an ellipsoid immersed in 
a Newtonian suspending medium. This model can be only applied to dilute sus- 
pensions since the interactions among ellipsoids and between ellipsoid and fluid 
were neglected in the model. Quantitative analyses for predicting the orientation 
of ellipsoids in a variety of flow situations have been given in the numerous studies 
by Goldsmith and Mason.z Givler et aL3 have developed a numerical simulation 
scheme to predict the fiber orientation in various geometries by integrating Jeffery’s 
equation along the streamlines. Folgar and Tucker4 proposed a phenomenological 
model which can represent the interaction between fibers for concentrated fiber 
suspensions by adding a diffusion term into Jeffery’s equation; then Jackson et 1.71.~ 

applied this model to predict the fiber orientation in the compression molding 
process. 

In an attempt to consider the interaction between fluid and fiber, Batchelor6 
derived the bulk stress tensor in a dilute suspension of rigid ellipsoids as an ensemble 
average when the suspension is statistically homogeneous. Lipscomb et al.’ was the 
first to consider the fluid/fiber interaction in the numerical simulation of the flow 
of fiber suspensions in contraction geometries using the full alignment assumption 
for the fiber orientation distribution. While their simulation and experimental 
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66 S. J.  LEE AND S. J. LEE 

results have shown that the full alignment assumption is valid in dilute suspensions, 
the orientation distribution of the fiber should be obtained for more accurate and 
advanced calculations. 

The concept of the orientation distribution function (I&) had long been used to 
represent the state of the fiber orientation, but using I& is too time-consuming for 
numerical calculations of the fiber orientation complex flows. The concept of the 
Orientation tensor as a compact form of the orientation description, used by Advani 
and is very convenient and efficient for this purpose. So far, there has 
not been any studies which solve simultaneously' the coupled system of equations 
for the flow and the orientation distribution numerically. In this work, we have 
developed a rigorous numerical scheme to predict two-dimensional flow and ori- 
entation distribution in the flow of fiber suspensions through contraction geometries 
including the fibedfiber and fluid/fiber interactions using the finite element method. 

2. MATHEMATICAL MODELING AND GOVERNING EQUATIONS 

The flow and fiber orientation distribution in the steady isothermal flow of fiber 
suspensions through contraction geometries are governed by the following equa- 
tions: 

(Continuity Equation) 

(Cauchy Momentum Equation) 

The extra stress tensor T is given by the constitutive equation for the fiber sus- 
pensions. The continuum model approach to formulating the constitutive equation 
is based on the works of Batchelor6 and Hinch and Ideal1o and the model for the 
dilute and semiconcentrated fiber suspensions leads to the following form of the 
constitutive equation. 

Here, p is the viscosity of the Newtonian suspending medium, D is the rate of 
deformation tensor, defined by D = (Vv + VvT)/2,  + is the volume fraction of 
the fiber, p is the unit vector along the axis of the fiber, and ( ) denotes the integral 
over all p weighted by the orientation distribution function of the fiber, that is, 
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FLOW SIMULATION FIBER SUSPENSIONS 67 

The stress shape coefficients C,. C1. and C,, determined by the aspect ratio of the 
fiber (r), are expressed as follows in the limiting case of r >> 1. 

r 2  
2[ln(2r) - 1.51 

c, = 

6 In 2r - 11 
rz  cz. = 

Furthermore, for large r this continuum constitutive model, Equation (3). reduces 
to 

r 2  
ln(2r) - 1.5 

a = +  

Besides the above equations, the equation for the fiber orientation is required; 
i t  can be given in terms of the orientation tensors defined by Equation (4): 

.11.Va, = - W.a,  + a,.W + X(D*a, + a l . D  - 2D:a,*a,) + 2Cl+(I - .al) 
(7) 

Here, a2 represents the second order orientation tensor (pp) given by Equation 
(4a), and the quadratic closure approximation to the fourth order orientation tensor 
has been applied, that is, a, = (pppp) = a,.a2. Note that the last term in Equation 
(7) represents a diffusion term to account for the fibedfiber interaction, whose 
magnitude is controlled by a phenomenological interaction coefficient CI. 

The geometry of interest in this study is the axisymmetric 4.5:l contraction. This 

FIGURE 1 Contraction geometry used in this study. 
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geometry has been chosen since there already exists the corresponding experimental 
data of Lipscomb er al.’ A schematic diagram and boundary conditions for the 
contraction geometry is illustrated in Figure l.’Only the half doniain of the system 
is considered because of its symmetry. The inlet velocity profile at the entrance 
(along A-B) is assumed to be fully developed Poiseuille flow. The centerline (along 
B-C) is a boundary which has a symmetric character. Thus the radial velocity and 
the axial velocity gradient in the radial direction is zero along this line. The force 
free boundary condition is assumed at the outlet. Along the solid wall (along D- 
A), a no-slip boundary condition is applied. The boundary condition for the fiber 
orientation is only required at the inlet (along A-B) because the orientation equa- 
tion is a first order hyperbolic type of PDE, and a random fiber orientation dis- 
tribution is assumed. For a two-dimensional orientation distribution, it is given by 
a,, = a,, = 0.5 and aI2 = 0. 

3. NUMERICAL METHODS 

In this work, the standard Galerkin finite element method has been used to solve 
the flow and orientation equations, Equations (1). (2), (6). and (7). The velocity 
components u and u ( r  and z directions, respectively), the pressure p ,  and the 
orientation tensor components a,, and a,, are approximated in terms of the fol- 
lowing shape functions 

where uj, uj, pi ,  aIlj, and a,2j  are nodal values of velocity components, pressure, 
and orientation tensor components; Jlj is either a 6-node quadratic shape function 
in the triangular elements or a 9-node biquadratic shape function i n  the quadrilateral 
elements; and 4, is either a 3-node linear shape function in the triangular elements 
or a 4-node bilinear shape function in the quadrilateral elements. 

Using the divergence theorem to the momentum equation, the Galerkin forms 
of the momentum equations are given as follows: 

Here, the 1-, 2-, and 3-directions are associated with r ,  z ,  and 0 directions, (;) 
stands for the integration over the domain, ((;)) stands for the integration along 
the boundary surface, and t ,  and t2 are the r and  z components of the contact force 
per unit area on the boundary. The integration schemes used here are 9-point 
Gaussian quadrature in the quadrilateral elements and 7-point Gaussian quadrature 
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in the triangular elements. And Tj j  are given by the constitutive equation. Equation 
(6 ) .  as 

TI, = ( ~ ( u  + 7 '  

T,, = 2 W V ,  + p.a{all(l - ull)lcl + (l l2(1 - "12)(11,  + i'l) + ( I  - Ull)(1 - ~ f l l ) 0 : }  

T,, = 2 p d r  

+ pa{n,,a,,ic I + al,ol,(u , + 7 '  I) + u12( I - (lll)il ,} (10b) 

(IOC) 

( 1 Od) 

With the weight function +i, the continuity equation becomes 

(r+i;  u , + u/r + 7, ?) = 0 ( I  1 )  

And with the weight function $/, the orientation equations are given as follows 

( $ 1 ;  U Q i l . 1  + I J ~ ~ I  2) = - ( $ I ;  2~12a12) + [ $ I ;  A(2diiaii + 2d,za,2 

By substituting the approximations of Equation (8) into Equations (9) and (12). 
a nonlinear algebraic system of equations is obtained which must be solved by an 
iterative technique. Equations (9) and ( 1  1 )  are solved first f a  Newtonian creeping 
flow at a = 0. Then, using this creeping flow solution. Equation (12) is solved for 
a,, and a , ,  at 01 > 0 and this solution is again used to solve Equations (9) and ( 1  1 )  
for the velocity and pressure. This procedure is repeated until the convergence is 
obtained at a given value of c1 and then the-value of a is increased gradually to 
obtain the solutions at higher a values of interest. 

4. RESULTS AND DISCUSSION 

The meshes used in this work to simulate the flow of fiber suspensions through 
axisyrnmetric 4.5:1 contraction geometry are shown in Figure 2. MESH1 is made 
of 135 elements and MESH2 contains 540 elements. The conditions used in the 
simulations are those of Lipscomb et al.' That is. the value of a in this work is set 
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70 S. J .  LEE AND S. 1. LEE 

FIGURE :! Finitc clcnicnt nicshc.;. ( a )  MEStiI: (11) MESt12. 

FIGURE 3 
iilignincnt assumption on  MESH 1 .  

( i i )  Strcanilincs and ( h )  I'ihcr oricntiition distrihution ohtiiiiicd ;it u = 7. I:! with rull 

at 7.12. since the aspect ratio of fiber was 276 and the fiber volunie fraction 0.00045 
in their experiments. 

The streamlines and orientation distribution at (Y = 7.12 on M E S H  1 using the 
full  alignment assumption is given in Figure 3. This full alignment assumption, 
which neglects fiber//fiber interaction. has been used by Lipscomb el a/.' and it 
results in the maximum vortex size at the  corner. The vortex size in Figure 3 is 
somewhat larger than the experimental one and i t  implies that there may exist 
interaction among fibers in the experiments. 

Figure 4 represents the results at (Y = 7.12 and C,  = 0.1 on M E S H  1 .  As expected. 
the vortex size at the corner becomes smaller. even smiiller than the experimental 
one. Therefore. the value of C, needs to be reduced to obtain a vortex size consistent 
with the experiment. As C,  decreases. the convergence of the iterative numerical 
scheme is difficult to obtain. In Figure 5. the results are shown for C,  = 0.056. 
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FLOW SIMULATION FIBER SUSPENSIONS 71 

the smallest value of C, attainable on MESH 1 .  But the vortex size in Figure 5 is 
still smaller than the experimental one. A finer mesh (MESH2) is then used to 
reduce the value of C, further. and convergence is attained down at C, = 0.029 
o n  MESH2. whose results are shown in Figure 6. To overcome this convergence 
problem at  low values of C,. the streamline-upwind method'' may be used to treat 
the convective terms i n  the orientation equations. Marchal and Crochet" have 
successfully applied this method to the viscoelastic flow problems. 

In order to represent the orientation distribution graphically. two eigenvectors 
of the orientation tensor whose magnitudes are given by t h e  corresponding eigen- 
values may be drawn. Those two major and minor axes give an orientation ellipsoid 
which indicates the degree of orientation distribution along every direction. The 
calculated eigenvectors are also shown in Figures 3-6 to show the orientation 
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FIGURE 6 
0.029 on MESHZ. 

(a)  Streamlincs and (h)  fihcr orientation distrihution ohtained ;it a = 7.12 and C, = 

distribution of fibers. In Figure 3, fibers align fully along the streamlines due to 
the full alignment assumption, and Figures 4-6 illustrate the fiber orientation 
distribution obtained at C, > 0. Along the centerlines in Figures 4-6. the fibers 
remain almost randomly positioned until the vicinity of the contraction region, 
where they start to align along the flow direction. Along the wall boundary, fibers 
quickly distribute to their own orientation. and the orientations are always constant 
over the shear field except for the recirculating vortex region. Because the ori- 
entation distribution is a function of total shear. fibers along the wall have the 
steady state distribution of the infinite shear at a given C,. 

5. CONCLUSIONS 

A finite element algorithm has been developed to predict the flow and fiber ori- 
entation distribution of fiber suspensions through contraction geometry, consid- 
ering the fluid/fiber and fibedfiber interaction simultaneously. The flow of fiber 
suspensions is quite different from that of the suspending Newtonian medium 
without fibers, and the most probable directions of fiber orientation distributions 
are also quite different from the streamline directions. especially in the shear flow 
region. 

The maximum vortex size is observed when the full al'ignment assumption is 
used, but the vortex size decreases as the interaction coefficient C, increases. 
Numerical results compared with the experimental results of Lipscomb et al. within 
reasonable agreement. 

The problem of constitutive models to treat the concentrated suspensions and 
the calculation for the entire range of the interaction coefficient will require further 
study. 
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